Summary sheets

KS4 - Atomic structure

Subatomic particles: nucleus (protons and neutrons), electrons in shells.
Describe the particles in terms of their relative masses and relative charges:

- Protons - mass 1 , charge +1 .
- Electrons - mass $=$ negligible $\left(\frac{1}{1840}\right)$, charge -1 .
- Neutrons - mass $=1$, charge $=0$.

Notes

- Number of protons = number of electrons (uncharged/neutral atoms).
- Proton number = atomic number.
- Mass number $=$ protons + neutrons.

KS4 - Isotopes and calculating relative isotopic mass
Isotopes are atoms of the same elements which have different numbers of neutrons but the same number of protons.
Relative isotopic mass $=\frac{\text { sum of (\% abundance } \times \text { isotopic mass })}{100}$

KS4 - Ionic compounds

Formation of ions

Atoms of metallic elements in Groups 1,2 and 3 can form positive ions when they take part in reactions since they are readily able to lose electrons
Atoms of Group 1 metals lose one electron and form ions with a $1+$ charge, e.g. Na^{+}
Atoms of Group 2 metals lose two electrons and form ions with a $2+$ charge, e.g. Mg^{2+}
Atoms of Group 3 metals lose three electrons and form ions with a $3+$ charge, e.g. Al^{3+}
Atoms of non-metallic elements in Groups 5, 6 and 7 can form negative ions when they take part in reactions since they are able to gain electrons.
Atoms of Group 5 non-metals gain three electrons and form ions with a 3-charge, e.g. N^{3-}
Atoms of Group 6 non-metals gain two electrons and form ions with a 2- charge, e.g. O^{2-}
Atoms of Group 7 non-metals gain one electrons and form ions with a 1-charge, e.g. C

ANions $=$ Negative

$$
\mathrm{Ca} \text { +ions }=\text { +ive }
$$

Why are ions negative or positive?

- Find the atomic number (the smaller number with the symbol).
- This equals the number of protons, which equals the number of electrons in an uncharged/neutral atom.
- If electrons are lost from the atom, there are now more protons than electrons, so the ion is positively charged.
- If electrons are gained by the atom, there are now fewer protons than electrons, so the ion is negatively charged.

Filling electron shells

- $n=1$, maximum $=2 \mathrm{e}^{-}$
- $n=2$; maximum $=8 \mathrm{e}^{-}$
- $n=3$;maximum $=18 \mathrm{e}^{-}$
- $n=4 ;$ maximum $=32 \mathrm{e}^{-}$

Representing electron configurations

- Write as e.g. 2.8.3 or $2,8,3$

Using the Periodic Table

- Period number (row) = number of shells
- Group number (column) = number of electrons in the outer (last) shell

Group	1		2		3		5		6		7	
	Li		Be		B		N		0		F	
	Atom	Ion										
Electrons	-3	-2	-4	-2	-5	-2	-7	-10	-8	-10	-9	-10
Protons	+3	+3	+4	+4	+5	+5	+7	+7	+8	+8	+9	+9
Overall charge	0	1+	0	2+	0	3+	0	3-	0	2-	0	1-
Electron configuration	2.1	2	2.2	2	2.3	2	2.5	2.8	2.6	2.8	2.7	2.8
Name of ions	lithium		beryllium		boron		nitride		oxide		fluoride	
	Lose electrons, charge $=$ + group number						ns, charge $=$ group number - 8					

Hints and tips

Always ...

... count the electrons!
... remember that ions should have full outer shells.
.. make sure that when an ion is formed, you put square brackets round the diagram and show the charge.

Never ...

... show the electron shells overlapping.
... show electrons being shared (ions are formed by the transfer of electrons!).
.. remove electrons from the inner shell.
... give metals a negative charge.

KS4 - Covalent compounds (simple covalent bonding)

A covalent bond is form when a pair of electrons is shared between two atoms.
Covalent bonding results in the formation of molecules.

Hints and tips

Always ...

... show the shells touching or overlapping where the covalent bond is formed.
... count the final number of electrons around each atom to make sure that the outer shell is full.

Never ...

.. include a charge on the atoms.
... draw the electron shells separated.
... draw unpaired electrons in the region of overlap.

The two diagrams below only show the outer-shell electrons.

