Summary sheets

KS4 – Atomic structure

Subatomic particles: nucleus (protons and neutrons), electrons in shells.

Describe the particles in terms of their relative masses and relative charges:

- Protons mass 1, charge +1.
- Electrons mass = negligible $(\frac{1}{1840})$, charge –1.
- Neutrons mass = 1, charge = 0.

Notes

- Number of protons = number of electrons (uncharged/neutral atoms).
- Proton number = atomic number.
- Mass number = protons + neutrons.

KS4 – Isotopes and calculating relative isotopic mass

Isotopes are *atoms* of the same elements which have different numbers of *neutrons* but the same number of *protons*.

Relative isotopic mass = $\frac{\text{sum of (\% abundance} \times \text{ isotopic mass)}}{100}$

KS4 – Ionic compounds

Formation of ions

Atoms of metallic elements in Groups 1,2 and 3 can form positive ions when they take part in reactions since they are readily able to lose electrons.

Atoms of Group 1 metals lose one electron and form ions with a 1+ charge, e.g. Na⁺

Atoms of Group 2 metals lose two electrons and form ions with a 2+ charge, e.g. Mg²⁺

Atoms of Group 3 metals lose three electrons and form ions with a 3+ charge, e.g. Al³⁺

Atoms of non-metallic elements in Groups 5, 6 and 7 can form negative ions when they take part in reactions since they are able to gain electrons.

Atoms of Group 5 non-metals gain three electrons and form ions with a 3- charge, e.g. N³⁻

Atoms of Group 6 non-metals gain two electrons and form ions with a 2- charge, e.g. O²⁻

Atoms of Group 7 non-metals gain one electrons and form ions with a 1- charge, e.g. Cl⁻

- This equals the number of protons, which equals the number of electrons in an uncharged/neutral atom.
- If electrons are lost from the atom, there are now more protons than electrons, so the ion is positively charged.
- If electrons are gained by the atom, there are now fewer protons than electrons, so the ion is negatively charged.

KS4 – Electron configuration

Filling electron shells

- n = 1, maximum = $2e^{-}$
- n = 2; maximum = 8e⁻
- n = 3; maximum = $18e^{-1}$
- n = 4; maximum = $32e^{-1}$

Representing electron configurations

• Write as e.g. 2.8.3 or 2,8,3

Using the Periodic Table

- Period number (row) = number of shells
- Group number (column) = number of electrons in the outer (last) shell

Group number	1		2		3				5		6		7	
	Li		Ве		В				N		0		F	
	Atom	Ion	Atom	Ion	Atom	Ion			Atom	Ion	Atom	Ion	Atom	Ion
Electrons	-3	-2	-4	-2	-5	-2			-7	-10	-8	-10	-9	-10
Protons	+3	+3	+4	+4	+5	+5			+7	+7	+8	+8	+9	+9
Overall charge	0	1+	0	2+	0	3+			0	3–	0	2–	0	1-
Electron configuration	2.1	2	2.2	2	2.3	2			2.5	2.8	2.6	2.8	2.7	2.8
Name of ions	lithium		beryllium		boron				nitride		oxide		fluoride	
	Lose electrons, charge = +group number								Gain electrons, charge = group number - 8					

KS4 – Dot-and-cross diagrams for ionic bonding

Hints and tips

Always ...

- ... count the electrons!
- ... remember that ions should have full outer shells.
- ... make sure that when an ion is formed, you put square brackets round the diagram and show the charge.

Never ...

- ... show the electron shells overlapping.
- ... show electrons being shared (ions are formed by the **transfer** of electrons!).
- ... remove electrons from the inner shell.
- ... give metals a negative charge.

KS4 – Covalent compounds (simple covalent bonding)

A covalent bond is form when a pair of electrons is shared between two atoms.

Covalent bonding results in the formation of molecules.

Hints and tips

Always ...

- ... show the shells touching or overlapping where the covalent bond is formed.
- ... count the final number of electrons around each atom to make sure that the outer shell is full.

Never ...

- ... include a charge on the atoms.
- ... draw the electron shells separated.
- ... draw unpaired electrons in the region of overlap.

The two diagrams below only show the outer-shell electrons.

