## Area under a graph

## A LEVEL LINKS

Scheme of work: 7b. Definite integrals and areas under curves

## Key points

- To estimate the area under a curve, draw a chord between the two points you are finding the area between and straight lines down to the horizontal axis to create a trapezium. The area of the trapezium is an approximation for the area under a curve.

- The area of a trapezium $=\frac{1}{2} h(a+b)$



## Examples

Example 1 Estimate the area of the region between the curve $y=(3-x)(2+x)$ and the $x$-axis from $x=0$ to $x=3$.
Use three strips of width 1 unit.


| $\boldsymbol{x}$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $y=(3-x)(2+\boldsymbol{x})$ | 6 | 6 | 4 | 0 |

Trapezium 1:
$a_{1}=6-0=6, b_{1}=6-0=6$
Trapezium 2:
$a_{2}=6-0=6, b_{2}=4-0=4$
Trapezium 3:
$a_{3}=4-0=4, a_{3}=0-0=0$

1 Use a table to record the value of $y$ on the curve for each value of $x$.

2 Work out the dimensions of each trapezium. The distances between the $y$-values on the curve and the $x$-axis give the values for $a$.
(continued on next page)

$$
\begin{aligned}
& \frac{1}{2} h\left(a_{1}+b_{1}\right)=\frac{1}{2} \times 1(6+6)=6 \\
& \frac{1}{2} h\left(a_{2}+b_{2}\right)=\frac{1}{2} \times 1(6+4)=5 \\
& \frac{1}{2} h\left(a_{3}+b_{3}\right)=\frac{1}{2} \times 1(4+0)=2 \\
& \text { Area }=6+5+2=13 \text { units }^{2}
\end{aligned}
$$

3 Work out the area of each trapezium. $h=1$ since the width of each trapezium is 1 unit.

4 Work out the total area. Remember to give units with your answer.

Example 2 Estimate the shaded area.
Use three strips of width 2 units.


| $\boldsymbol{x}$ | 4 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 7 | 12 | 13 | 4 |


| $\boldsymbol{x}$ | 4 | 6 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{y}$ | 7 | 6 | 5 | 4 |

Trapezium 1:
$a_{1}=7-7=0, b_{1}=12-6=6$
Trapezium 2:
$a_{2}=12-6=6, b_{2}=13-5=8$
Trapezium 3:
$a_{3}=13-5=8, a_{3}=4-4=0$
$\frac{1}{2} h\left(a_{1}+b_{1}\right)=\frac{1}{2} \times 2(0+6)=6$
$\frac{1}{2} h\left(a_{2}+b_{2}\right)=\frac{1}{2} \times 2(6+8)=14$
$\frac{1}{2} h\left(a_{3}+b_{3}\right)=\frac{1}{2} \times 2(8+0)=8$
Area $=6+14+8=28$ units $^{2}$

1 Use a table to record $y$ on the curve for each value of $x$.

2 Use a table to record $y$ on the straight line for each value of $x$.

3 Work out the dimensions of each trapezium. The distances between the $y$-values on the curve and the $y$-values on the straight line give the values for $a$.

4 Work out the area of each trapezium. $h=2$ since the width of each trapezium is 2 units.

5 Work out the total area. Remember to give units with your answer.

## Practice

1 Estimate the area of the region between the curve $y=(5-x)(x+2)$ and the $x$-axis from $x=1$ to $x=5$.
Use four strips of width 1 unit.

## Hint:

For a full answer, remember to
include 'units ${ }^{2}$ '.

2 Estimate the shaded area shown on the axes.
Use six strips of width 1 unit.


3 Estimate the area of the region between the curve $y=x^{2}-8 x+18$ and the $x$-axis
from $x=2$ to $x=6$.
Use four strips of width 1 unit.

4 Estimate the shaded area.
Use six strips of width $\frac{1}{2}$ unit.


5 Estimate the area of the region between the curve $y=-x^{2}-4 x+5$ and the $x$-axis from $x=-5$ to $x=1$.
Use six strips of width 1 unit.

6 Estimate the shaded area.
Use four strips of equal width.


7 Estimate the area of the region between the curve $y=-x^{2}+2 x+15$ and the $x$-axis from $x=2$ to $x=5$.
Use six strips of equal width.

8 Estimate the shaded area. Use seven strips of equal width.


## Extend

9 The curve $y=8 x-5-x^{2}$ and the line $y=2$ are shown in the sketch.
Estimate the shaded area using six strips of equal width.


10 Estimate the shaded area using five strips of equal width.


## Answers

134 units $^{2}$

2149 units $^{2}$

314 units $^{2}$
$4 \quad 25 \frac{1}{4}$ units $^{2}$

535 units $^{2}$

642 units $^{2}$
$7 \quad 26 \frac{7}{8}$ units $^{2}$

856 units $^{2}$

935 units $^{2}$
$10 \quad 6 \frac{1}{4}$ units $^{2}$

