Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\operatorname{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	$\mathbf{0}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\boldsymbol{\operatorname { s i n }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\boldsymbol{\operatorname { c o s }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\boldsymbol{\operatorname { t a n }}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

1 Always start by labelling the sides.

2 You are given the adjacent and the hypotenuse so use the cosine ratio.

3 Substitute the sides and angle into the cosine ratio.

4 Rearrange to make x the subject.
5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle x.
Give your answer correct to 3 significant figures.

2 You are given the opposite and the adjacent so use the tangent ratio.
3 Substitute the sides and angle into the tangent ratio.
4 Use $\tan ^{-1}$ to find the angle.
5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.

6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

$$
\begin{aligned}
& \tan \theta=\frac{\text { opp }}{\text { adj }} \\
& \tan x=\frac{\sqrt{3}}{3} \\
& x=30^{\circ}
\end{aligned}
$$

2 You are given the opposite and the adjacent so use the tangent ratio.

3 Substitute the sides and angle into the tangent ratio.
4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

e

d

f

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

b

c

3 Work out the height of the isosceles triangle.
Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

c

b

d

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B . c is the side opposite angle C .

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ} \\
& w^{2}=33.80404051 \ldots \\
& w=\sqrt{33.80404051} \\
& w=5.81 \mathrm{~cm}
\end{aligned}
$$

1 Always start by labelling the angles and sides.

2 Write the cosine rule to find the side.

3 Substitute the values a, b and A into the formula.
4 Use a calculator to find w^{2} and then w.
5 Round your final answer to 3 significant figures and write the units in your answer.

Example 5 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

	1 Always start by labelling the angles and sides.
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$	2 Write the cosine rule to find the angle.
$\cos \theta=\frac{10^{2}+7^{2}-15^{2}}{2 \times 10 \times 7}$	3 Substitute the values a, b and c into the formula.
$\cos \theta=\frac{-76}{140}$	4 Use $\cos ^{-1}$ to find the angle.
$\theta=122.878349 \ldots$	5 Use your calculator to work out $\cos ^{-1}(-76 \div 140)$.
$\theta=122.9^{\circ}$	6 Round your answer to 1 decimal place and write the units in your answer.

Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

7 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

8 a Work out the length of WY. Give your answer correct to 3 significant figures.
b Work out the size of angle WXY.
Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B . c is the side opposite angle C .

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side x.
Give your answer correct to 3 significant figures.

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the side.

3 Substitute the values a, b, A and B into the formula.

4 Rearrange to make x the subject.
5 Round your answer to 3 significant figures and write the units in your answer.

Example 7 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values a, b, A and B into the formula.

4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

10 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS.
Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B.
c is the side opposite angle C.
- The area of the triangle is $\frac{1}{2} a b \sin C$.

Examples

Example 8 Find the area of the triangle.

Area $=\frac{1}{2} a b \sin C$
Area $=\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$
Area $=19.805361 \ldots$
Area $=19.8 \mathrm{~cm}^{2}$

1 Always start by labelling the sides and angles of the triangle.

2 State the formula for the area of a triangle.
3 Substitute the values of a, b and C into the formula for the area of a triangle.
4 Use a calculator to find the area.
5 Round your answer to 3 significant figures and write the units in your answer.

Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

b

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$.
Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side.
Give your answers correct to 3 significant figures.
a

b

c

d

15 The area of triangle $A B C$ is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.

Answers

1 a 6.49 cm
b $\quad 6.93 \mathrm{~cm}$
c $\quad 2.80 \mathrm{~cm}$
d $\quad 74.3 \mathrm{~mm}$
e $\quad 7.39 \mathrm{~cm}$
f $\quad 6.07 \mathrm{~cm}$

2 a 36.9°
b $\quad 57.1^{\circ}$
c $\quad 47.0^{\circ}$
d 38.7°
$3 \quad 5.71 \mathrm{~cm}$
$4 \quad 20.4^{\circ}$
5 a 45°
b $\quad 1 \mathrm{~cm}$
c $\quad 30^{\circ}$
d $\sqrt{3} \mathrm{~cm}$
$6 \quad$ a $\quad 6.46 \mathrm{~cm}$
b $\quad 9.26 \mathrm{~cm}$
c $\quad 70.8 \mathrm{~mm}$
d $\quad 9.70 \mathrm{~cm}$
$7 \quad \mathbf{a} \quad 22.2^{\circ}$
b $\quad 52.9^{\circ}$
c $\quad 122.9^{\circ}$
d 93.6°
$8 \quad \mathbf{a} \quad 13.7 \mathrm{~cm}$
b $\quad 76.0^{\circ}$
$9 \quad \mathbf{a} \quad 4.33 \mathrm{~cm}$
b $\quad 15.0 \mathrm{~cm}$
c
45.2 mm
d $\quad 6.39 \mathrm{~cm}$

10 a 42.8°
b $\quad 52.8^{\circ}$
c $\quad 53.6^{\circ}$
d 28.2°

11 a 8.13 cm
b $\quad 32.3^{\circ}$

12 a $18.1 \mathrm{~cm}^{2}$
b $\quad 18.7 \mathrm{~cm}^{2}$
c $\quad 693 \mathrm{~mm}^{2}$
$13 \quad 5.10 \mathrm{~cm}$
14 a 6.29 cm
b $\quad 84.3^{\circ}$
c $\quad 5.73 \mathrm{~cm}$
d 58.8°
$15 \quad 15.3 \mathrm{~cm}$

