Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation $y=m x+c$ has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$$
\begin{aligned}
& y=2 x+4 \\
& m=2 \\
& y=2 x+c \\
& 9=2 \times 4+c \\
& \\
& 9=8+c \\
& c=1 \\
& y=2 x+1
\end{aligned}
$$

1 As the lines are parallel they have the same gradient.
2 Substitute $m=2$ into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates into the equation $y=2 x+c$
4 Simplify and solve the equation.
5 Substitute $c=1$ into the equation $y=2 x+c$

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$$
\begin{aligned}
& y=2 x-3 \\
& m=2 \\
& -\frac{1}{m}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c \\
& 5=-\frac{1}{2} \times(-2)+c \\
& 5=1+c \\
& c=4 \\
& y=-\frac{1}{2} x+4
\end{aligned}
$$

1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
2 Substitute $m=-\frac{1}{2}$ into $y=m x+c$.
3 Substitute the coordinates $(-2,5)$ into the equation $y=-\frac{1}{2} x+c$
4 Simplify and solve the equation.
5 Substitute $c=4$ into $y=-\frac{1}{2} x+c$.

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=0, x_{2}=9, y_{1}=5 \text { and } y_{2}=-1 \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0} \\
\quad=\frac{-6}{9}=-\frac{2}{3} \\
-\frac{1}{m}=\frac{3}{2} \\
y=\frac{3}{2} x+c \\
\text { Midpoint }=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right) \\
2=\frac{3}{2} \times \frac{9}{2}+c \\
c=-\frac{19}{4} \\
y=\frac{3}{2} x-\frac{19}{4}
\end{array}
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.

2 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
3 Substitute the gradient into the equation $y=m x+c$.

4 Work out the coordinates of the midpoint of the line.

5 Substitute the coordinates of the midpoint into the equation.

6 Simplify and solve the equation.
7 Substitute $c=-\frac{19}{4}$ into the equation $y=\frac{3}{2} x+c$.

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=\frac{a}{b}$ then the negative reciprocal $-\frac{1}{m}=-\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $y=2 x-6$
$(4,0)$
b $y=-\frac{1}{3} x+\frac{1}{2}$
c $x-4 y-4=0$
$(5,15)$
d $\quad 5 y+2 x-5=0$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $\quad(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$
$y=2 x-7$
b $y=3 x$
$2 x+y-3=0$
c $\quad y=4 x-3$
$4 y+x=2$
d $\quad 3 x-y+5=0$
$x+3 y=1$
e $\quad 2 x+5 y-1=0$
$y=2 x+7$
f $\quad 2 x-y=6$
$6 x-3 y+3=0$

6 The straight line $\mathbf{L}_{\mathbf{1}}$ passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of $\mathbf{L}_{\mathbf{1}}$ in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{2}}$ is parallel to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the point C with coordinates $(-8,3)$.
b Find the equation of \mathbf{L}_{2} in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{3}}$ is perpendicular to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the origin.
c Find an equation of \mathbf{L}_{3}

Answers

1 a $y=3 x-7$
b $\quad y=-2 x+5$
c $y=-\frac{1}{2} x$
d $\quad y=\frac{3}{2} x+8$
$2 y=-2 x-7$
3 a $y=-\frac{1}{2} x+2$
b $\quad y=3 x+7$
c $y=-4 x+35$
d $y=\frac{5}{2} x-8$
4 a $y=-\frac{1}{2} x$
b $y=2 x$
5 a Parallel
d Perpendicular
b Neither
c Perpendicular
e Neither
f Parallel

6 a $\quad x+2 y-4=0$
b $\quad x+2 y+2=0$
c $y=2 x$

