Translating graphs

A LEVEL LINKS

Scheme of work: 1f. Transformations - transforming graphs - $\mathrm{f}(x)$ notation

Key points

- The transformation $y=\mathrm{f}(x) \pm a$ is a translation of $y=\mathrm{f}(x)$ parallel to the y-axis; it is a vertical translation.

As shown on the graph,

- $y=\mathrm{f}(x)+a$ translates $y=\mathrm{f}(x)$ up
- $y=\mathrm{f}(x)-a$ translates $y=\mathrm{f}(x)$ down.

- The transformation $y=\mathrm{f}(x \pm a)$ is a translation of $y=\mathrm{f}(x)$ parallel to the x-axis; it is a horizontal translation.

As shown on the graph,

- $y=\mathrm{f}(x+a)$ translates $y=\mathrm{f}(x)$ to the left
- $y=\mathrm{f}(x-a)$ translates $y=\mathrm{f}(x)$ to the right.

Examples

Example 1 The graph shows the function $y=\mathrm{f}(x)$.
Sketch the graph of $y=\mathrm{f}(x)+2$.

$\xrightarrow{\text { S }}$

Example 2 The graph shows the function $y=\mathrm{f}(x)$.
Sketch the graph of $y=\mathrm{f}(x-3)$.

	For the function $y=\mathrm{f}(x-3)$ translate the function $y=\mathrm{f}(x) 3$ units right.
-2	

Practice

1 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch and label the graphs of $y=\mathrm{f}(x)+4$ and $y=\mathrm{f}(x+2)$.

2 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch and label the graphs of $y=\mathrm{f}(x+3)$ and $y=\mathrm{f}(x)-3$.

3 The graph shows the function $y=\mathrm{f}(x)$.
Copy the graph and on the same axes sketch the graph of $y=\mathrm{f}(x-5)$.

4 The graph shows the function $y=\mathrm{f}(x)$ and two transformations of $y=\mathrm{f}(x)$, labelled C_{1} and C_{2}. Write down the equations of the translated curves C_{1} and C_{2} in function form.

5 The graph shows the function $y=\mathrm{f}(x)$ and two transformations of $y=\mathrm{f}(x)$, labelled C_{1} and C_{2}. Write down the equations of the translated curves C_{1} and C_{2} in function form.

6 The graph shows the function $y=\mathrm{f}(x)$.
a Sketch the graph of $y=\mathrm{f}(x)+2$
b Sketch the graph of $y=\mathrm{f}(x+2)$

				y				
4								
				1				

Stretching graphs

A LEVEL LINKS

Scheme of work: 1f. Transformations - transforming graphs - $\mathrm{f}(x)$ notation
Textbook: Pure Year 1, 4.6 Stretching graphs

Key points

- The transformation $y=\mathrm{f}(a x)$ is a horizontal stretch of $y=\mathrm{f}(x)$ with scale factor $\frac{1}{a}$ parallel to the x-axis.

- The transformation $y=\mathrm{f}(-a x)$ is a horizontal stretch of $y=\mathrm{f}(x)$ with scale factor $\frac{1}{a}$ parallel to the x-axis and then a reflection in the y-axis.

- The transformation $y=a \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor a parallel to the y-axis.

- The transformation $y=-a \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor a parallel to the y-axis and then a reflection in the x-axis.

Examples

Example 3 The graph shows the function $y=\mathrm{f}(x)$.
Sketch and label the graphs of $y=2 \mathrm{f}(x)$ and $y=-\mathrm{f}(x)$.

The function $y=2 \mathrm{f}(x)$ is a vertical stretch of $y=\mathrm{f}(x)$ with scale factor 2 parallel to the y-axis.
The function $y=-\mathrm{f}(x)$ is a reflection of $y=\mathrm{f}(x)$ in the x-axis.

Example 4 The graph shows the function $y=\mathrm{f}(x)$.
Sketch and label the graphs of $y=\mathrm{f}(2 x)$ and $y=\mathrm{f}(-x)$.

Practice

7 The graph shows the function $y=\mathrm{f}(x)$.
a Copy the graph and on the same axes sketch and label the graph of $y=3 \mathrm{f}(x)$.
b Make another copy of the graph and on the same axes sketch and label the graph of $y=\mathrm{f}(2 x)$.

8 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and on the same axes sketch and label the graphs of $y=-2 \mathrm{f}(x)$ and $y=\mathrm{f}(3 x)$.

9 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and, on the same axes, sketch and label the graphs of $y=-\mathrm{f}(x)$ and $y=\mathrm{f}\left(\frac{1}{2} x\right)$.

10 The graph shows the function $y=\mathrm{f}(x)$. Copy the graph and, on the same axes, sketch the graph of $y=-\mathrm{f}(2 x)$.

11 The graph shows the function $y=\mathrm{f}(x)$ and a transformation, labelled C.
Write down the equation of the translated curve C in function form.

12 The graph shows the function $y=\mathrm{f}(x)$ and a transformation labelled C.
Write down the equation of the translated curve C in function form.

13 The graph shows the function $y=\mathrm{f}(x)$.
a Sketch the graph of $y=-\mathrm{f}(x)$.
b Sketch the graph of $y=2 \mathrm{f}(x)$.

Extend

14 a Sketch and label the graph of $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=(x-1)(x+1)$.
b On the same axes, sketch and label the graphs of $y=\mathrm{f}(x)-2$ and $y=\mathrm{f}(x+2)$.

15 a Sketch and label the graph of $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=-(x+1)(x-2)$.
b On the same axes, sketch and label the graph of $y=\mathrm{f}\left(-\frac{1}{2} x\right)$.

Answers

1

2

3

$4 \quad C_{1}: y=\mathrm{f}\left(x-90^{\circ}\right)$
$C_{2}: y=\mathrm{f}(x)-2$
$5 \quad C_{1}: y=\mathrm{f}(x-5)$
$C_{2}: y=\mathrm{f}(x)-3$

6 a

b

7 a

8

b

9

10

$11 y=\mathrm{f}(2 x)$
$12 y=-2 \mathrm{f}(2 x)$ or $y=2 \mathrm{f}(-2 x)$

13 a

b

14

15

