Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

Example 3 Solve $2 x+3 y=2$ and $5 x+4 y=12$ simultaneously.

```
\((2 x+3 y=2) \times 4 \rightarrow \quad 8 x+12 y=8\)
\((5 x+4 y=12) \times 3 \rightarrow \frac{15 x+12 y=36}{7 x}=28\)
So \(x=4\)
Using \(2 x+3 y=2\)
    \(2 \times 4+3 y=2\)
So \(y=-2\)
Check:
    equation \(1: 2 \times 4+3 \times(-2)=2\) YES
    equation \(2: 5 \times 4+4 \times(-2)=12\) YES
```

1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.

2 To find the value of y, substitute $x=4$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

$$
1 \quad \begin{aligned}
& 4 x+y=8 \\
& \\
& x+y=5
\end{aligned}
$$

$23 x+y=7$
$3 x+2 y=5$
$3 \quad 4 x+y=3$
$3 x-y=11$
$4 \quad 3 x+4 y=7$
$x-4 y=5$
$5 \quad 2 x+y=11$
$x-3 y=9$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

- The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations $y=2 x+1$ and $5 x+3 y=14$

```
\(5 x+3(2 x+1)=14\)
\(5 x+6 x+3=14\)
\(11 x+3=14\)
\(11 x=11\)
So \(x=1\)
Using \(y=2 x+1\)
    \(y=2 \times 1+1\)
So \(y=3\)
Check:
    \(\begin{array}{ll}\text { equation } 1: 3=2 \times 1+1 \\ \text { equation } 2: 5 \times 1+3 \times 3=14 & \text { YES }\end{array}\)
```

 1 Substitute \(2 x+1\) for \(y\) into the
 second equation.
 2 Expand the brackets and simplify.
 3 Work out the value of \(x\).
 4 To find the value of \(y\), substitute
 \(x=1\) into one of the original
 equations.
 5 Substitute the values of \(x\) and \(y\) into
 both equations to check your
 answers.
 Example 5 Solve $2 x-y=16$ and $4 x+3 y=-3$ simultaneously.

```
y=2x-16
4x+3(2x-16)=-3
4x+6x-48=-3
10x-48=-3
10x=45
So }x=4\frac{1}{2
Using }y=2x-1
    y=2\times4\frac{1}{2}-16
So }y=-
Check:
equation 1:2\times4\frac{1}{2}-(-7)=16 YES
equation 2: 4 4 4\frac{1}{2}+3\times(-7)=-3 YES
```

1 Rearrange the first equation.
2 Substitute $2 x-16$ for y into the second equation.
3 Expand the brackets and simplify.
4 Work out the value of x.

5 To find the value of y, substitute $x=4 \frac{1}{2}$ into one of the original equations.

6 Substitute the values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$7 y=x-4$
$2 x+5 y=43$
$8 \quad y=2 x-3$
$5 x-3 y=11$
$9 \quad 2 y=4 x+5$
$9 x+5 y=22$
$10 \quad \begin{aligned} & 2 x=y-2 \\ & 8 x-5 y=-11\end{aligned}$
$113 x+4 y=8$
$2 x-y=-13$
$123 y=4 x-7$
$2 y=3 x-4$
$13 \quad 3 x=y-1$
$2 y-2 x=3$
$143 x+2 y+1=0$
$4 y=8-x$

Extend

15 Solve the simultaneous equations $3 x+5 y-20=0$ and $2(x+y)=\frac{3(y-x)}{4}$.

Answers

$1 x=1, y=4$
$2 x=3, y=-2$
$3 x=2, y=-5$
$4 x=3, y=-\frac{1}{2}$
$5 x=6, y=-1$
$6 x=-2, y=5$
$7 x=9, y=5$
$8 \quad x=-2, y=-7$
$9 x=\frac{1}{2}, y=3 \frac{1}{2}$
$10 x=\frac{1}{2}, y=3$
$11 x=-4, y=5$
$12 x=-2, y=-5$
$13 x=\frac{1}{4}, y=1 \frac{3}{4}$
$14 x=-2, y=2 \frac{1}{2}$
$15 x=-2 \frac{1}{2}, y=5 \frac{1}{2}$

