Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and
 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

The graph of $y=x^{2}$ is a parabola.

When $x=0, y=0$.
$a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$
So the graph intersects the y-axis at ($0,-6$)
When $y=0, x^{2}-x-6=0$
$(x+2)(x-3)=0$
$x=-2$ or $x=3$

So,
the graph intersects the x-axis at $(-2,0)$ and (3, 0)

1 Find where the graph intersects the y-axis by substituting $x=0$.

2 Find where the graph intersects the x-axis by substituting $y=0$.
3 Solve the equation by factorising.
4 Solve $(x+2)=0$ and $(x-3)=0$.
$5 a=1$ which is greater than zero, so the graph has the shape:

$\begin{aligned} x^{2}-x-6 & =\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6 \\ & =\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4} \end{aligned}$ When $\left(x-\frac{1}{2}\right)^{2}=0, x=\frac{1}{2}$ and $y=-\frac{25}{4}$, so the turning point is at the point $\left(\frac{1}{2},-\frac{25}{4}\right)$	6 To find the turning point, complete the square. 7 The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

Practice

1 Sketch the graph of $y=-x^{2}$.
2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $y=x^{2}-5 x+4$
c $y=x^{2}-4$
d $y=x^{2}+4 x$
e $y=9-x^{2}$
f $y=x^{2}+2 x-3$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $y=x^{2}-5 x+6$
b $\quad y=-x^{2}+7 x-12$
c $y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Answers

1

2 a

b

b

e

c

c

d

f

4

5 a

b

c

6

Line of symmetry at $x=-1$.

