1b-3 Solving quadratic equationsSolving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5 x^{2}=15 x$

$$
\begin{aligned}
& 5 x^{2}=15 x \\
& 5 x^{2}-15 x=0 \\
& 5 x(x-3)=0 \\
& \text { So } 5 x=0 \text { or }(x-3)=0 \\
& \text { Therefore } x=0 \text { or } x=3
\end{aligned}
$$

1 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x=0$.
2 Factorise the quadratic equation. $5 x$ is a common factor.
3 When two values multiply to make zero, at least one of the values must be zero.
4 Solve these two equations.

Example 2 Solve $x^{2}+7 x+12=0$
$x^{2}+7 x+12=0$
$b=7, a c=12$
$x^{2}+4 x+3 x+12=0$
$x(x+4)+3(x+4)=0$
$(x+4)(x+3)=0$
So $(x+4)=0$ or $(x+3)=0$
Therefore $x=-4$ or $x=-3$

1 Factorise the quadratic equation.
Work out the two factors of $a c=12$
which add to give you $b=7$.
(4 and 3)
2 Rewrite the b term (7x) using these two factors
3 Factorise the first two terms and the last two terms.
$4(x+4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Example 3 Solve $9 x^{2}-16=0$

$$
\begin{aligned}
& 9 x^{2}-16=0 \\
& (3 x+4)(3 x-4)=0 \\
& \text { So }(3 x+4)=0 \text { or }(3 x-4)=0 \\
& x=-\frac{4}{3} \text { or } x=\frac{4}{3}
\end{aligned}
$$

1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3 x)^{2}$ and $(4)^{2}$.
2 When two values multiply to make zero, at least one of the values must be zero.
3 Solve these two equations.

Example 4 Solve $2 x^{2}-5 x-12=0$
$b=-5, a c=-24$

So $2 x^{2}-8 x+3 x-12=0$
$2 x(x-4)+3(x-4)=0$
$(x-4)(2 x+3)=0$
So $(x-4)=0$ or $(2 x+3)=0$
$x=4$ or $x=-\frac{3}{2}$

1 Factorise the quadratic equation.
Work out the two factors of $a c=-24$ which add to give you $b=-5$.
(-8 and 3)
2 Rewrite the b term ($-5 x$) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x-4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Practice

1 Solve
a $\quad 6 x^{2}+4 x=0$
b $\quad 28 x^{2}-21 x=0$
c $\quad x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $\quad x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $\quad x^{2}-36=0$
i $x^{2}+3 x-28=0$
j $\quad x^{2}-6 x+9=0$
k $2 x^{2}-7 x-4=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $\quad x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square lets you write a quadratic equation in the form $p(x+q)^{2}+r=0$.

Examples

Example 5 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$x^{2}+6 x+4=0$	1 Write $x^{2}+b x+c=0$ in the form
$(x+3)^{2}-9+4=0$	$\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=0$
$(x+3)^{2}-5=0$	2 Simplify.
$(x+3)^{2}=5$	3 Rearrange the equation to work out x. First, add 5 to both sides.
$x+3= \pm \sqrt{5}$	4 Square root both sides. Remember that the square root of a
$x= \pm \sqrt{5}-3$	value gives two answers. 5 Subtract 3 from both sides to solve the equation.
So $x=-\sqrt{5}-3$ or $x=\sqrt{5}-3$	

Example 6 Solve $2 x^{2}-7 x+4=0$. Give your solutions in surd form.

$2 x^{2}-7 x+4=0$	
$2\left(x^{2}-\frac{7}{2} x\right)+4=0$	$\mathbf{1}$Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$ $2\left[\left(x-\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}\right]+4=0$
$\mathbf{2}$Now complete the square by writing $x^{2}-\frac{7}{2} x$ in the form $\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}$ $2\left(x-\frac{7}{4}\right)^{2}-\frac{49}{8}+4=0$ $2\left(x-\frac{17}{8}=0\right.$	$\mathbf{3}$Expand the square brackets.
(continued on next page)	

$2\left(x-\frac{7}{4}\right)^{2}=\frac{17}{8}$	$\mathbf{5}$Rearrange the equation to work out x. First, add $\frac{17}{8}$ to both sides.
$\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}$	$\mathbf{6} \quad$Divide both sides by 2.
$x-\frac{7}{4}= \pm \frac{\sqrt{17}}{4}$	7 $x= \pm \frac{\sqrt{17}}{4}+\frac{7}{4}$ Square root both sides. Remember that the square root of a value gives two answers.
So $x=\frac{7}{4}-\frac{\sqrt{17}}{4}$ or $x=\frac{7}{4}+\frac{\sqrt{17}}{4}$	$\mathbf{9} \quad$ Wdd $\frac{7}{4}$ to both sides.

Practice

3 Solve by completing the square.
a $\quad x^{2}-4 x-3=0$
b $x^{2}-10 x+4=0$
c $x^{2}+8 x-5=0$
d $x^{2}-2 x-6=0$
e $2 x^{2}+8 x-5=0$
f $5 x^{2}+3 x-4=0$

4 Solve by completing the square.
a $\quad(x-4)(x+2)=5$
b $\quad 2 x^{2}+6 x-7=0$
c $\quad x^{2}-5 x+3=0$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $a x^{2}+b x+c=0$ can be solved using the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- If $b^{2}-4 a c$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^{2}+6 x+4=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=1, b=6, c=4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-6 \pm \sqrt{6^{2}-4(1)(4)}}{2(1)} \\
& x=\frac{-6 \pm \sqrt{20}}{2} \\
& x=\frac{-6 \pm 2 \sqrt{5}}{2} \\
& x=-3 \pm \sqrt{5} \\
& \text { So } x=-3-\sqrt{5} \text { or } x=\sqrt{5}-3
\end{aligned}
$$

1 Identify a, b and c and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=1, b=6, c=4$ into the formula.

3 Simplify. The denominator is 2 , but this is only because $a=1$. The denominator will not always be 2 .
4 Simplify $\sqrt{20}$.
$\sqrt{20}=\sqrt{4 \times 5}=\sqrt{4} \times \sqrt{5}=2 \sqrt{5}$
5 Simplify by dividing numerator and denominator by 2 .
6 Write down both the solutions.

Example 8 Solve $3 x^{2}-7 x-2=0$. Give your solutions in surd form.

$$
\begin{aligned}
& a=3, b=-7, c=-2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-2)}}{2(3)} \\
& x=\frac{7 \pm \sqrt{73}}{6} \\
& \text { So } x=\frac{7-\sqrt{73}}{6} \text { or } x=\frac{7+\sqrt{73}}{6}
\end{aligned}
$$

1 Identify a, b and c, making sure you get the signs right and write down the formula.
Remember that $-b \pm \sqrt{b^{2}-4 a c}$ is all over $2 a$, not just part of it.

2 Substitute $a=3, b=-7, c=-2$ into the formula.

3 Simplify. The denominator is 6 when $a=3$. A common mistake is to always write a denominator of 2 .
4 Write down both the solutions.

Practice

5 Solve, giving your solutions in surd form.
a $3 x^{2}+6 x+2=0$
b $\quad 2 x^{2}-4 x-7=0$

6 Solve the equation $x^{2}-7 x+2=0$
Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

7 Solve $10 x^{2}+3 x+3=5$
Give your solution in surd form.

Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
a $\quad 4 x(x-1)=3 x-2$
b $\quad 10=(x+1)^{2}$
c $\quad x(3 x-1)=10$

Answers

$1 \quad$ a $\quad x=0$ or $x=-\frac{2}{3}$
b $\quad x=0$ or $x=\frac{3}{4}$
c $\quad x=-5$ or $x=-2$
d $\quad x=2$ or $x=3$
e $\quad x=-1$ or $x=4$
f $\quad x=-5$ or $x=2$
g $\quad x=4$ or $x=6$
h $x=-6$ or $x=6$
i $\quad x=-7$ or $x=4$
j $\quad x=3$
k $x=-\frac{1}{2}$ or $x=4$
l $x=-\frac{2}{3}$ or $x=5$

2 a $\quad x=-2$ or $x=5$
b $\quad x=-1$ or $x=3$
c $\quad x=-8$ or $x=3$
d $\quad x=-6$ or $x=7$
e $\quad x=-5$ or $x=5$
f $x=-4$ or $x=7$
g $\quad x=-3$ or $x=2 \frac{1}{2}$
h $x=-\frac{1}{3}$ or $x=2$

3
a $\quad x=2+\sqrt{7}$ or $x=2-\sqrt{7}$
b $\quad x=5+\sqrt{21}$ or $x=5-\sqrt{21}$
c $\quad x=-4+\sqrt{21}$ or $x=-4-\sqrt{21}$
d $\quad x=1+\sqrt{7}$ or $x=1-\sqrt{7}$
e $\quad x=-2+\sqrt{6.5}$ or $x=-2-\sqrt{6.5}$
f $x=\frac{-3+\sqrt{89}}{10}$ or $x=\frac{-3-\sqrt{89}}{10}$

4 a $\quad x=1+\sqrt{14}$ or $x=1-\sqrt{14}$
b $x=\frac{-3+\sqrt{23}}{2}$ or $x=\frac{-3-\sqrt{23}}{2}$
c $x=\frac{5+\sqrt{13}}{2}$ or $x=\frac{5-\sqrt{13}}{2}$
$5 \quad$ a $\quad x=-1+\frac{\sqrt{3}}{3}$ or $x=-1-\frac{\sqrt{3}}{3} \quad$ b $\quad x=1+\frac{3 \sqrt{2}}{2}$ or $x=1-\frac{3 \sqrt{2}}{2}$
$6 x=\frac{7+\sqrt{41}}{2}$ or $x=\frac{7-\sqrt{41}}{2}$
$7 x=\frac{-3+\sqrt{89}}{20}$ or $x=\frac{-3-\sqrt{89}}{20}$
$8 \quad \mathbf{a} \quad x=\frac{7+\sqrt{17}}{8}$ or $x=\frac{7-\sqrt{17}}{8}$
b $\quad x=-1+\sqrt{10}$ or $x=-1-\sqrt{10}$
c $\quad x=-1 \frac{2}{3}$ or $x=2$

